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Abstract

IcePick is a system for computationally selecting “diverse” sets of

molecules. It measures the dissimilarity between two molecules based on their

3D surface accessible features, taking into account conformational flexibility.

Then, the intrinsic diversity of an entire set of molecules is calculated from a

spanning tree over the dissimilarities. We compare our dissimilarity measure

against traditional 2D topological approaches, and compare the spanning tree

diversity measure against commonly-used variance techniques. The method

has proven easy to implement and fast enough to be used in selection of

reactants for numerous production sized combinatorial libraries.
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1 Introduction

Combinatorial chemistry is now a standard tool in drug development [1, 2, 3, 4]. The

selection of reactants to be used (from the large universe of possible materials) is an

important problem in combinatorial chemistry. Our focus in this paper is the selection

of a maximally diverse set of reactants. We break this problem into two pieces: a pairwise

dissimilarity (or molecular distance) measure and a novel concept of the diversity of a set

of molecules.

Our computational approach is based on two previously validated techniques for

representing and comparing molecules. The first technique is the shape based binding site

model used in Compass [5]. The second technique involves fast flexible conformational

search in the presence of a binding site model as used in Hammerhead [6]. Both of these

techniques have been proven effective in biological test systems [5, 7, 6, 8].

1.1 The Diversity Problem

Given a large collection of molecules meeting any number of pre-specified conditions

such as cost, availability, ease of synthesis or predicted activity, the diversity problem is

to select a smaller collection of molecules that best represents the larger set while avoiding

redundancy or duplication.

Our purpose in screening is to find novel ligands that non-covalently bind to a protein.

We assume that any lead can be expanded around (e.g. with directed libraries [9]), so two

similar leads have little more value than one lead in early stage screening. So, we want to
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maximize the probability of finding at least one lead. It is intuitive that one should do this

by picking the molecules to be as dissimilar to each other as possible. This intuition can

be justified. If one can not increase the probability of any individual molecule being a lead

one can increase the probability an ensemble contains a lead by decreasing the probability

that the ensemble contains multiple leads (as long as odds of any individual molecule in

the ensemble being a lead are not decreased).

1.2 Pairwise Dissimilarity

Molecular docking [6, 10, 11, 12, 13] and surface based binding site models [14, 7, 15,

16, 17] have proven to be good predictors of biological activity. We adapt some of these

ideas to yield our notion of dissimilarity. This measure is based on the explicit comparison

of surface accessible steric and polar features (derived from simultaneous conformational

analysis of pairs of molecules). This measure is compared to a common fragment/topology

based fingerprint system. We demonstrate an implementation with sufficient throughput

and flexibility to support a large combinatorial chemistry laboratory. We further show that

these scores are “stable:” knowing many of these scores allows one to infer additional

scores (without re-running the scoring function). It is also likely that these scores directly

correlate to other surface mediated biological properties and so may be useful in their

prediction [15].

Our dissimilarity measure (called the IcePick measure and denoted d(a, b)) directly

models several interactions important to specific binding of ligands to proteins. This
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measure is intended to have the property that if d(a, b) is large then it is less likely that a and

b have similar binding behavior (with respect to an unknown receptor) and if d(a, b) is small

then it is likely that a and b have similar binding behavior. The measure is used in place

of an arbitrary set of pharmacophores. This differs from other approaches [18, 19, 24, 25]

in that we are not trying to maximize the number of different values of different features

(logP, mass, number of rings) or cluster data, but to directly design a selection of molecules

that are simultaneously novel with respect to each other. It is hoped that this method stays

closer to the problem of maximizing the chance of finding a hit.

This notion of pairwise dissimilarity follows Compass [5, 7]. Compass encodes

molecules based on their surface features (hydrophobic surface area, hydrogen bond

donors, hydrogen bond acceptors). These representations are then used as targets for a

flexible docking program. We compare one molecule to another by “turning it inside out”

to form a pocket that perfectly fits around it (i.e. an ideal protein) and then flexibly docking

the second molecule into the pocket. The docking is scored by comparing the protein

accessible surface and the vector directions available for both hydrogen bond donation and

acceptance. This process is averaged over a representative set of low energy conformations

of the first molecule to get an overall score. This score measures how well the second

molecule, as a flexible entity, can imitate typical conformations of the first.

An important property of our dissimilarity measure is that it is “stable.” Even though

computing IcePick dissimilarity involves multiple flexible dockings we find the score is

well behaved in that if one knows both the distances from x to a pre-selected set of
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molecules M1, M2, · · · , Mk and the distances from y to the same set M1, M2, · · · , Mk

then one can predict d(x, y) (without re-running the IcePick algorithm or any additional

knowledge about the molecules x and y). This allows one to significantly reduce the

number of dockings performed and represents a dramatic speedup of the algorithm.

1.3 Set Diversity

We compute the diversity of an entire set of molecules using a structure called a “spanning

tree” [20]. Spanning tree methods have been used previously for chemical clustering

[21, 22]; in this application they are used to estimate the total amount of novelty in binding

modes represented by a set of molecules. We propose using the weight of the minimum

weight spanning tree as the dissimilarity score of a set of molecules. Spanning trees,

unlike traditional variance or additive measures, are well suited to eliminate near duplicate

selections. The spanning tree method estimates the intrinsic diversity of a set; it is not

limited to comparing relative diversities of sets.

Given all of the pairwise dissimilarities for a set of molecules, the diversity of the

set is defined to be the sum of the edge weights of the minimum weight spanning tree

drawn on the set. For a collection of n molecules: M1, M2, · · · , Mn a spanning tree is a

collection of n − 1 pairs of molecules that connects all of the molecules (indirectly) with

each other. For example, with n = 4 the 3 pairs (M1, M2), (M1, M3), (M1, M4) form a

spanning tree (e.g. we say M2 is connected to M4 because we could move from M2 to

M1 and then from M1 to M4). The 3 pairs (M1, M2), (M2, M3), (M3, M4) form another
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spanning tree. The weight of a particular spanning tree is the sum of the n − 1 listed

pair-dissimilarities (or edges) in the tree (i.e. the pair (M1, M2) denotes the dissimilarity

d(M1, M2)). A minimum weight spanning tree is just a spanning tree that has the least

possible weight. The spanning tree method has the desirable properties that it is good at

eliminating duplicate behavior and it counts each instance of novelty only once. We feel

this compares favorably to variance type methods (see Section 3.7) which can over-count

novelty, and covering methods that require prodigious amounts of additional information

(such as a list of all relevant pharmacophores).

We point out that a structure called a Steiner Tree is similar to a minimum weight

spanning tree and has the additional important property that it is monotone (its measure of

diversity never goes down when items are added). Because of the difficulty of computing

Steiner Trees we use the spanning tree measure, despite its lack of monotonicity.

2 Methods

2.1 Pairwise Dissimilarity

The first component of our system is the pairwise dissimilarity measure. Given multiple

low energy conformations of molecules we flexibly dock them into each other’s Compass

representation to determine how dissimilar they are. The conformations used are from a

proprietary Axys program Twitch that performs a sparse conformational analysis under

a Dreiding force-field [26], though any representative set of conformations would be
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adequate.

The form of this component is:

Input: Two sets of low energy conformations of two molecules A and B.

Output: The dissimilarity measure of the two molecules, in the range 0-1, where 0 means

identical.

To compute how well molecule B imitates molecule A we sample A’s conformations

and compute how well B flexibly imitates each one. The average of all these matchings

is how well molecule B is able to imitate an average conformation of molecule A. The

similarity of molecule A and molecule B is B’s ability to imitate A on average plus A’s

ability to imitate B on average. The pairwise dissimilarity is 1.0 minus the similarity.

We note that our measure is not, in general, a metric (but this is a technical

consideration).

The flexible dockings required for the dissimilarity score can be performed either in

free space (with a number of starting orientations per conformation) or with the common

moieties of each reactant held in an enforced correspondence. The per conformation

dissimilarity score is described in more detail in [14, 7, 6]. What is being calculated (for

each given orientation and conformation) is the expected difference in distances from many

“feature probes” in space to ligand A and their corresponding distances to ligand B (aligned

onto A). The feature probes are arranged in spherical shells about the ligands. In addition
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to this steric term, two polar terms are computed for each probe: “distance and direction to

nearest polar feature” for both hydrogen bond donors and hydrogen bond acceptors. These

three terms encode the difference in surface presentations of two molecules.

This measure is quick to compute and its gradient exists almost everywhere. The

gradient allows the use of standard smooth global optimization techniques to find

simultaneous orientation and conformation parameters that minimize the difference

between the two molecules. (During this flexible fitting, low-energy conformations and

correct chiralities are maintained.) We use the Broyden-Fletcher-Goldfarb-Shanno gradient

optimization method [27]. Most of the time required to evaluate dissimilarity is spent

performing these dockings.

While in our application each conformation is a different low energy conformation

of a given molecule—we note that the algorithm can automatically handle mixtures (e.g.

racemic mixtures, tautomers or different molecules) when scoring. To score how well one

mixture imitates another, one supplies a set of molecules and conformations that is thought

to well represent the mixture as the set A. To score optically pure compounds one uses only

conformations with the desired chirality.

When using a small number of these conformations (typically 10 to 100) a dissimilarity

calculation typically takes about 40 seconds on a single DEC Alpha. For efficiency

all dissimilarities calculated are stored in the GNU GDBM database [28] (so that no

dissimilarity is ever calculated twice). Currently approximately 1/2 million dissimilarity

results are stored in our GNU GDBM database. This represents almost 1 CPU year of



IcePick: molecular diversity 10

computation on a single DEC Alpha.

2.2 Diversity Definition

The second component of our system is the spanning tree method for scoring the diversity

of a collection of molecules. The method uses our pairwise dissimilarity measure. Given

molecules M1, M2, · · · , Mk and the k2 dissimilarities (di,j = dissimilarity of Mi and Mj)

we define the “diversity of the set M1, M2, · · · , Mk” to be the total edge weights of the

minimum weight spanning tree drawn on the complete graph with vertices 1, 2, · · · , k and

edge weights di,j .

The spanning tree algorithm has the form:

Input: A set of k molecules and a function d(·, ·) that computes the pairwise dissimilarity

of molecules.

Output: The diversity score: the weight of the minimum weight spanning tree drawn

on the graph with nodes 1, 2, · · · , k and edge weights di,j .

This algorithm is used as the “score” subroutine for the optimization method given

below. The spanning tree calculation itself is done efficiently using Kruskal’s algorithm

[20].
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2.3 Optimization

Input: A set of n molecules, the size k of the desired diversity set, and a function called

“score()” that returns the diversity score of a set of molecules.

Output: A set of k molecules with a high diversity score.

What we have described up to now is a system that given a set returns a diversity score.

It remains to find a set with a high score. We describe a simple “swap-one” optimization

heuristic for this purpose.

We do not guarantee that the selection picks a set that maximizes the weight of

the minimum weight spanning tree because the selection problem is computationally

intractable (it can encode independent set detection [29] and there are no known algorithms

for problems this expressive that simultaneously guarantee accuracy and speed).

Note that representations of the actual molecules being optimized are not needed by

this algorithm—it works solely with the dissimilarity information in the input.

In our application we are using

score(M1, M2, · · · , Mk) = weight of MWST , (1)

where “weight of MWST” denotes the total edge weight of the minimum weight spanning

tree drawn through the complete graph with vertices 1, 2, · · · , k and edge weights di,j

(weight = total weight of edges in tree). One could also make information other than the
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spanning tree score available to the optimization algorithm.

The algorithm starts with a random subset of k molecules, and then uses a “swap-

one” approach to improve the diversity score. It scans through the entire list of allowed

molecules. If any one of these would increase the set-score, it replaces the least-favored

molecule in the current set. The scanning process is repeated until no further improvements

are found.

Other optimization techniques, such as the greedy method or simulated annealing, could

be used, but initial experiments have not indicated any worthwhile advantage in using such

techniques.

A nice consequence this method is that it helps minimize the number of dissimilarities

computed. Suppose one wanted to select k molecules from a set of n molecules. There are

n(n− 1)/2 dissimilarities implied by the set of n molecules. However, local optimality of

the set can be tested by looking at approximately kn edges. Typically the number of passes

has been about 5, which requires the computation of only 5kn edges (an advantage when

k < n/10). For a typical application such as “pick 22 amines out of a set of 1,500 amines”

the savings is quite significant: if IcePick converges in 5 passes then no more than 165,000

dissimilarities are used by IcePick even though the total set of 1,500 molecules determines

1,124,250 dissimilarities, so fewer than 1/6th of the possible dissimilarity computations

were needed.

Figure 1 shows the selection of 25 points from 1000 points distributed uniformly in the

unit square using the spanning tree set-measure and our swap-one optimization method.



IcePick: molecular diversity 13

Figure 1: 25 points selected from the unit square

We do not suggest that molecular dissimilarity data is distributed as in this example, but

note that Agrafiotis has used this as a kind of “sanity-test” [30]. Our swap-one algorithm

was compared to a standard greedy algorithm in this simplified setting. The greedy method

builds a MWST one point at a time by repeatedly adding the point which maximimally

increases the weight of the MWST. The swap-one optimization method takes significantly

longer than the greedy method, but produces a selection with a 9% lower (better) score.

Recently, Waldman, Li and Hassan have independently rediscovered our use of

spanning trees as set-scores (instead of as clustering tools) [23].
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Figure 2: Substitutions with topological and IcePick similarity measures.

3 Results and Discussion

3.1 Substitution Search

Our first example is chosen to be simple. Consider the three molecules depicted in Figure 2.

Suppose we had a set of molecules including the chemically undesirable molecule 2-(tri-

methyl silyloxy)benzaldehyde. An ideal replacement would have a similar structure without

the offending silicon. Both Daylight’s Merlin tool [31] and IcePick were given the same

subset of molecules from the Available Chemicals Directory [32] from which to choose

a substitute. (The subset consisted of about 40,000 molecules that had been loaded into

the IcePick system over the previous year.) The chemical similarity engine found in

Merlin suggests salicylaldehyde as a structurally near replacement. IcePick suggests the

strong structural analog 2-(tert-butylthio)benzaldehyde shown in Figure 2. Incidentally

this substitute has an almost identical molecular weight—even though this is not a feature

considered by IcePick.

Daylight’s topological similarity system (like many others) is designed as an all

purpose piece of software. It is intended to solve the molecular similarity problem for
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all applications, including predicting chemical reactions. Molecules are summarized by

determining all local neighborhoods (also called fragments, 2D, or topological features) of

each atom. Dissimilarity of two molecules is computed by determining what fraction of

each other’s local neighborhoods they agree on. This count is then “Tanimoto” normalized

by dividing by the total number of different local neighborhood types found in the two

molecules.

Under such a topological measure the 2-(tri-methyl silyloxy)benzaldehyde to

salicylaldehyde substitution is conservative. As much as possible of the molecule

was retained (up to the offending silicon) and the rest removed without any

replacement. IcePick’s surface-based measure, on the other hand, replaces 2-

(tri-methyl silyloxy)benzaldehyde with 2-(tert-butylthio)benzaldehyde not because the

chemical diagrams look similar but because for every conformation of 2-(tri-

methyl silyloxy)benzaldehyde there is a nearly identical conformation of 2-(tert-

butylthio)benzaldehyde (and vice versa).

Of course, a topological system that considers silicon and carbon as being structurally

similar might suggest the same substitution that IcePick does.

3.2 Comparison with Topological Dissimilarity

We wish to show that the previous example is not unique. Figure 3 plots IcePick versus 2D

(topological) dissimilarity and shows that they are not strongly correlated. Approximately

2,000 random primary amines were selected from the Available Chemicals Directory [32].
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1,000 of the possible pairs of molecules that could be chosen from the set of 2,000

molecules were selected. For each of these pairs both the topological distance and IcePick

dissimilarity were computed and the result is a point on the graph in Figure 3. In this

graph each point is one of the pairs of molecules, the x-coordinate is the square-root of

the number of local neighborhoods the pair differs in (or the Euclidean distance), and the

y-coordinate is the IcePick dissimilarity. The linear correlation coefficient (Pearson r) is

below .4, indicating that IcePick computes something different than the topological system.

The Tanimoto normalization (which would alter the x-coordinates so all the points are in

the interval [0, 1]) has been left out as it non-uniformly compresses the x-range and makes

the trend even worse. Hamming distance (or squared Euclidean distance) also worsens the

correlation.
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0.6

0 2 4 6 8 10 12 14

Figure 3: Topological Features versus IcePick dissimilarity
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3.3 Classifying Amino Acids

Another simple example examines the classification of the 20 natural amino acids. The

dissimilarity measure can be used to suggest substitutions. For instance, it selects

arginine as the nearest analogue to lysine, which agrees with common observations [33].

Furthermore, IcePick’s pick of a diversity set of size 5 from the 20 natural amino acids

is: arginine, aspartic acid, glutamine, tyrosine, proline. This selection hits all 4 classes

of the typical amino acid classifications: basic, acidic, uncharged polar (twice) and non-

polar [34]. The IcePick selection of size 4 does not include representatives of all 4 classes

(because IcePick considers steric factors in addition to polar moieties).

3.4 Minimum Spanning Trees

Another example illustrates IcePick’s spanning tree method. Consider Figure 4. The four

disks represent four idealized molecules and the dissimilarities are as drawn in the figure

(i.e. disks drawn near each other are similar and disks drawn far apart are dissimilar).

The lines drawn are a minimum weight spanning tree. Under our system the diversity of

the set would be the sum of the lengths of the three drawn edges. IcePick automatically

recognizes (without need of a clustering algorithm to pre-process the data) that almost all

of the diversity of this set would come from the one long edge.

A variance based system (Section 3.7) would add the lengths of all 6 possible edges

in the diagram (including 4 long edges). In such a variance based system one could add

significant diversity to the set by adding a near duplicate of any of the 4 molecules, whereas
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Figure 4: Minimum spanning tree for four ideal molecules

under the spanning tree method a near duplicate molecule never adds a significant amount

of diversity.

A more complicated example is found in Figure 5. In this diagram all the squares

and triangles represent idealized molecules with dissimilarities given by how far apart the

figures are drawn. Each of the five rows in this figure depicts the minimum weight spanning

tree drawn between a set of points in two clusters. All that varies from row to row is the

distance between the centers of the two clusters. Our system initially scores the diversity

of the set as being the diversity in the set of squares plus the diversity in the set of triangles

plus the dissimilarity of the nearest square to the nearest triangle.

As the distance between the two clusters is decreased the diversity score decreases

similarly, until the two clusters touch (or in some sense are no longer two clusters). At

this point the spanning tree drawn through the squares starts taking shortcuts through the

spanning tree drawn through the triangles. IcePick determines that the diversity score is

significantly below the sum of the diversities of the two original clusters.

It is important to remember that the spanning tree method implies all of these

calculations automatically. It does not require a separate clustering algorithm to identify

clusters or depend on complicated software. All of the behavior exhibited here follows
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Figure 5: Two clusters drawn at 5 different distances

from the definition of a minimum weight spanning tree.
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3.5 Practical Experience

A final experience, related to illustrate that the method is fast enough to be used in practice:

IcePick has been in routine use at Axys since November of 1996. In this time it has

routinely solved problems such as picking 10 to 40 diverse side-chains from a set of 200

to 3,000 possibilities in 4 to 5 days. These selections have been used as the reactants in a

number of combinatorial libraries that now total over 50,000 diverse compounds.

3.6 Inferred Dissimilarities

Inferred dissimilarities are both a systematic speed-up for IcePick and an important

direction for future applications. The idea is similar to “affinity fingerprinting” [35]. The

concept is: if one knew, for a given molecule, its assay value for many assays, then one

would (in a biological sense) know every thing there was to be known about the molecule.

For example, one could make a crude prediction of the molecule’s behavior in a new

assay using assays thought to be most similar to the new assay. Thus a molecule is itself

represented by its list of assay results.

Briem and Kuntz [36] suggest a similar approach using UCSF Dock. A molecule is

encoded as its computed binding affinity to a large number of proteins. Further predictions

about the molecule (such as will it dock into a novel protein) can then be performed by

applying standard machine learning/classification algorithms on the vector of Dock-data.

A similar effect is known for our molecular dissimilarity score. Let {M1, M2, · · · , Mt}

be a selection of t molecules chosen to be diverse (either by IcePick or by hand). For A
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Figure 6: Inferred dissimilarity γ(A, B) versus computed dissimilarity d(A, B)

and B two arbitrary molecules let d(A, B) be the IcePick dissimilarity of A and B. Then

we have found the following distance geometry [37] based method of encoding molecules

as vectors in IRt−1 to be useful.

First t vectors x1, x2, · · · , xt ∈ IRt−1 are chosen such that

||xi − xj|| ≈ d(Mi, Mj) for all i, j . (2)

This can be done by a minimization algorithm or using a matrix method such as Cholesky

decomposition [27]. Then the molecule A is encoded by finding a point xA ∈ IRt−1 that

minimizes the expression

t∑

i=1

(
||xi − xA||2 − d(Mi, A)2

)2
. (3)

The new approximate dissimilarity function is

γ(A, B) = ||xA − xB|| . (4)

For 1,000 random pairs of molecules (Figure 6), a graph of γ(A, B) (using t = 50 “basis
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molecules”) versus d(A, B), shows a Pearson linear correlation coefficient of about .85.

This is why we refer to IcePick dissimilarities as being stable.

This allows us to choose k molecules out of n looking at only tn edges (when a

basis of size t is used). This can again be a very substantial savings (typical values:

n = 1, 500, k = 22, t = 32 so only 48,000 dissimilarity calculations are needed to score

the entire set, which is less than 1/23rd of the total possible computations needed). It must

be noted that t is basically a “speed vs. accuracy” control and the value should not be set

too low.

The ability to find a set of points in IRt−1 that well represents our dissimilarity data

as pairwise distances naturally leads one to ask if there is a minimal dimension, d, such

that such a representation exists. Also one would like to know if this dimension has a

meaningful interpretation. The Johnson–Lindenstrauss theorem [38] states that it is not

possible to determine the dimension d without a truly enormous amount of very accurate

data. The Johnson–Lindenstrauss theorem implies that if there is a good representation

of the dissimilarity data between n molecules as distances between n points in IRd (for

any d) then there is a good approximate representation of the dissimilarity data in IRc log2 n,

independent of d (where c is a small constant, not given here, independent of n and d). So

even if d is the correct minimal dimension for the problem we can find good representations

with dimension lower than d until we have enough molecules so that n > 2d/c. This

effectively masks d until we have an enormous amount of data to a very high accuracy.
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3.7 Variance Measures

In this paper we refer to some diversity measures as “variance measures.” We call a method

a “variance measure” if its overall purpose is to measure gross spread and its calculation is

analogous to the computation of a variance. A common example of such a measure would

be defining the diversity of a set to be the sum of all the squared distances of the pairs of

molecules in the set [39].

Even though the superficial form of the formulas used in these measures seem to

indicate that they are a function of all of the pair dissimilarities between molecules we

show that these measures depend only on each molecule’s distance from the center of the

set. This is due to cancellations well known in statistics.

These cancellations show that one can increase the variance measure of a set by adding

duplicate or near duplicate molecules to the set. This is accomplished by adding the useless

molecules in such a way that they do not significantly move the center and thus all of the

original molecules are still scored as before and the new molecules contribute additional

score. Since duplicate molecules add no real utility this behavior is a weakness of variance

type measures.

In contrast, the spanning tree method never increases its score when duplicate molecules

are added. This is because the spanning tree algorithm ensures that a molecule’s

contribution to the diversity measure depends most on the molecules nearest it (and not

on some abstract center).

To demonstrate the problem with variance we work an example.
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Given a set of molecules S encoded as n vectors in IRd, {M1, M2, · · · , Mn}, a suggested

total diversity of the set could be:

diversity(S) =
n∑

i=1

n∑

j=1

τ(Mi, Mj) (5)

where is τ(Mi, Mj) is a distance function.

For instance, for squared-Euclidean distance:

τ(Mi, Mj) =
d∑

k=1

((Mi)k − (Mj)k)
2 (6)

one could re-arrange and speed up the calculation by the identity:

n∑

i=1

n∑

j=1

τ(Mi, Mj) (7)

=
n∑

i=1

n∑

j=1

d∑

k=1

((Mi)k − (Mj)k)
2 (8)

= 2n
n∑

i=1

d∑

k=1



(Mi)k −
1

n

n∑

j=1

(Mj)k




2

(9)

= 2n
n∑

i=1

τ



Mi,
1

n

n∑

j=1

Mj



 , (10)

which reveals that such a diversity measure is only a function of the samples’ distance from

the center 1
n

∑n
j=1 Mj , and not really a function of all the intermolecular dissimilarities. A

similar effect is shown for the “cosine coefficient” in [40], though the authors do not draw

the same conclusion as given here.



IcePick: molecular diversity 25

4 Conclusions

The spanning tree system for assigning diversity scores to sets using only dissimilarity data

is both novel and useful. The method provides an efficient automated method for evaluating

the diversity of sets of molecules from dissimilarity data (without direct reference to any

underlying features). It works well on known examples.

Flexible surface feature models (models that depend on performing multiple

ligand/hypothesis dockings) are fast enough for practical use. We have presented a

flexible surface based system for molecular diversity, designed to choose reactants for

combinatorial chemistry. The system uses proven methods from structural drug design

to form opinions as to what degree one molecule can imitate the various conformations

of another. These conformations are encoded into approximations of binding modes and

include surface accessible steric and polar features. Flexibility of molecules is handled

by a flexible docking procedure and averaging over multiple conformations. The weak

correlation shown between 2D (or topological) indices and presented surface features

indicate that the two notions encode fundamentally different information. The flexible

surface feature dissimilarity system is stable in that it is able to predict itself. It is

anticipated that these dissimilarity scores will be able to predict other biological activity

(such as solubility or biological transport).

The IcePick system has selected reactants for combinatorial libraries from a database

of 10,000 compounds and assisted in the design of a suite of libraries resulting in the

production of over 50,000 diverse compounds at Axys.
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